Non-commutative operator Bohr inequality

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Non-commutative holomorphic functions on operator domains.

We characterize functions of d-tuples of bounded operators on a Hilbert space that are uniformly approximable by free polynomials on balanced open sets.

متن کامل

Doob’s Inequality for Non-commutative Martingales

Introduction: Inspired by quantum mechanics and probability, non-commutative probability has become an independent field of mathematical research. We refer to P.A. Meyer’s exposition [Me], the successive conferences on quantum probability [AvW], the lecture notes by Jajte [Ja1, Ja2] on almost sure and uniform convergence and finally the work of Voiculescu, Dykema, Nica [VDN] and of Biane, Speic...

متن کامل

Non-commutative A-g Mean Inequality

In this paper we consider non-commutative analogue for the arithmeticgeometric mean inequality ab + (r − 1)b ≥ ra for two positive numbers a, b and r > 1. We show that under some assumptions the non-commutative analogue for ab which satisfies this inequality is unique and equal to r-mean. The case 0 < r < 1 is also considered. In particular, we give a new characterization of the geometric mean.

متن کامل

Extremely Non-symmetric, Non-multiplicative, Non-commutative Operator Spaces

Motivated by importance of operator spaces contained in the set of all scalar multiples of isometries (MI-spaces) in a separable Hilbert space for C∗-algebras and Esemigroups we exhibit more properties of such spaces. For example, if an MI-space contains an isometry with shift part of finite multiplicity, then it is one-dimensional. We propose a simple model of a unilateral shift of arbitrary m...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Mathematical Analysis and Applications

سال: 2003

ISSN: 0022-247X

DOI: 10.1016/s0022-247x(03)00185-9